MID-SEMSTER EXAMINATION II SEMESTER, 2010-2011

B. MATH II YEAR ANALYSIS IV

Time Limit: 3hrs

Max Marks: 80

1. Let X = C[0,1], the space of all continuous functions from [0,1] into \mathbb{R} with the metric $d(f,g) = \sup_{0 \le x \le 1} |f(x) - g(x)|$. Consider the following three subsets of X :

- 1) $K_1 = \{1, x, x^2, x^3, ...\}$
- 2) $K_2 = \text{set of all polynomials with rational coefficients}$
- 3) $K_3 = \{p(\sin(7x) : p \text{ is a polynomial})\}$

Which of these sets are compact? Which of them are connected and which are dense in X? Justify your answers. [30]

2. Let X and Y be random variables with values in [0, 1] such that $EX^n =$ EY^n for all non-negative integers n. Prove that the distribution functions of X and Y are identical.

Hint: First prove that Ef(X) = Ef(Y) for any $f \in C[0,1]$ and then prove that the same equation holds for $f = I_{[0,a]}$ for any $a \in [0,1]$. [15]

3. Prove that the equation $\frac{dy}{dx} = e^x \sin(y)$ has a unique solution satisfying y(0) = 1.[10]

4. Prove that $\int_{0}^{\pi} f(x) \sin(nx) dx \to 0$ as $n \to \infty$ for any $f \in C[0,\pi]$. [Do not [15]

use Riemann Lebesgue Lemma].

5. Prove that $\{\sin(nx)\}_{n\geq 1}$ is not equi-continuous in $C[0,\pi]$.

Hint: if it is, prove (using problem 4) above) to show that $\sin(n_k x) \to 0$ uniformly for some $\{n_k\}$; compute $\int_{\Omega} \sin^2(n_k x) dx$ to get a contradiction. [10]